

Introduction

- carrier-based DPI.

aerodynamic performance.

1. WKinnunen H, Hebbink G, Peters H, Shur J, Price R: An Investigation into the Effect of Fine Lactose Particles on the Fluidization Behaviour and Aerosolization Performance of Carrier-Based Dry Powder Inhaler Formulations. AAPS PharmSciTech 2014, vol. 15, 4: 898–909. 2. Freeman Tehcnology, W instruction Specific Energy W7031, Issue A (Jan.2008)

From Laboratory to Commercial Scale: Impact of a Dosator-based **Capsule Filling Process on a Dry Powder Inhaler Aerodynamic** Performance

The development of a dry powder for inhaler (DPI): complex process integrating multiple fields of knowledge.

The physicochemical properties of the active pharmaceutical ingredient (API), the formulation compositions, the blending and capsule filling process, the device and the environmental conditions can impact the success of a

FT4 Aerodynamic Performance BFE) Next Generation Impactor Plastiape 60 L/min ; Pressure drop of 4 kPa ; N=1 Capsules HPMC; Size #3; Swedish orange		
SFE) Next Generation Impactor Plastiape 60 L/min ; Pressure drop of 4 kPa ; N=1 SX (CPS%) Capsules HPMC; Size #3; Swedish orange	FT4	Aerodynamic Performance
Plastiape 60 L/min ; Pressure drop of 4 kPa ; N=1 Ex (CPS%) Capsules HPMC; Size #3; Swedish orange	BFF)	Next Generation Impactor
ex (CPS%) Capsules HPMC; Size #3; Swedish orange)	Plastiape 60 L/min ; Pressure drop of 4 kPa ; N=1
	ex (CPS%)	Capsules HPMC; Size #3; Swedish orange

High shear mixing & Dosator-based capsule filler are reliable and robust technologies for increasing batch size requirements;

Maria Braga, João Pereira, Hugo Ferreira and Eunice Costa Hovione FarmaCiencia SA, Sete Casas, 2674 – 506 Loures, Portugal mbraga@hovione.com

- When moving from a laboratory to a commercial scale there are several challenges in the different steps of the process:
 - \succ **Blending mechanism** (convection, dispersion and shear) ^[1];
 - > Capsule filling process via a dosator filling technology;
- The main goal of this work was to perform a scale-up of the blending and capsule filling process of a DPI carried-based formulation from a laboratory to a commercial scale and to assess the impact on powder

lesults and Discussion										
	BUA	Α	B		FT4	Α	B			
0	Average (% w/w LC)	101.4	101.2		BFE (mJ)	260	284			
	% RDS	3	3		SE (mJ/g)	5.8	6.1			
	Success factor	% RDS < 5			CPS (% @ 15 Pa)	11	12			

Efficient blending process; Mixture uniformity independent from blending scale;

Table 2 – Capsule filling process parameters.

Run	Technology	Dosator diameter (mm)	Layer depth (mm)	Dosing chamber height (mm)	Chamber / Layer ratio	Speed (caps/h)
1	FlexaLAB	2.8	5.5	4.3	0.9	2000
2	FlexaLAB	2.8	8.0	4.1	0.5	2000
3	TEKNA	2.8	20.0	4.1	0.2	14000
4	TEKNA	2.8	20.0	4.1	0.2	20000

Easy flowing powders^[2]; Similar rheological properties;

> Comparable **ED**; Slight increase of **FPF** for Run 3 & 4;

