Overcoming the challenge of filling

 highly cohesive spray-dried powdersMaria Braga ${ }^{1}$, Bruno Ladeira ${ }^{1}$, Mariana F. Silva ${ }^{1}$, Joana Tavares ${ }^{1}$, Eunice Costa ${ }^{1}$ \& Márcio Temtem ${ }^{1}$

${ }^{1}$ Hovione FarmaCiencia SA, Sete Casas, 2674 - 506 Loures, Portugal

Introduction

- Capsule filling processes via a dosator are widely applied in the pharmaceutical industry. Capsule filling of spray dried powders using a dosator-based capsule filler can be challenging due to the cohesive properties inherent to those powders.

MG2 ${ }^{\circledR}$ Flexalab is a dosator-based capsule filler suitable for precision capsule filling, integrated with a 100% weight control system, MultiNETT, controlling in process the net weight contained in each single capsule.
For carrier-based powders, two main attributes were identified as major players in a low-dosage dosator-based capsule filing process: the ratio between the dosing chamber length and powder layer height and a homogenous powder layer ${ }^{[1,2]}$.

The mains goal of this work were to assess precision capsule filling of a model spray dried powder using a dosator-based MG2 ${ }^{\circledR}$ Flexalab unit, optimize the filling process and evaluate its impact on powder in-vitro aerodynamic performance.

Spray drying process parameters
Table 1 - Spray drying process parameters.

Composition $(\% \mathrm{w} / \mathrm{w})$	Solids concentration $(\%)$	Solvent system $(\% \mathrm{w} / \mathrm{w})$	Feed rate $(\mathrm{g} / \mathrm{min})$	Atomizing rate $(\mathrm{mm}$ in rotameter)	Dry gas flow rate $(\mathrm{kg} / \mathrm{h})$	Outlet temperature $\left({ }^{\circ} \mathrm{C}\right)$
Trehalose:	2	Water: Ethanol $50: 50$	7	50	35	70
L-leucine $80: 20$	2					

Figure 2 - Schematic representation of a dosator-based filling mechanism.

Experimental Design

Clear HPMC Size \#3
Fill weigh

15002000
$\begin{array}{cccc}\text { Dosator Diameters (mm) } \\ 1.9 & 2.2 & 2.8 & 3.4\end{array}$ $\begin{array}{lllll}1.9 & 2.2 & 2.8 & 3.4 & 3.7\end{array}$ Chamber / Layer ratio From 0.5 To $0.9 \quad \mathrm{~N}=3$

Results and Discussion

Capsule filling optimization

Powder adhesion: internal walls and behind the scrapper
Agglomerates in powder layer
Powder accumulation around the dosator
High powder compaction in layer
High rejection rates during capsule filling

Table 2 - SD powders capsule filling optimization: process parameters and results for five experimental runs.

RunFill (mght	Rejection rate (\%)	Dosator diameter $(\mathbf{m m})$	Chamber (Layer ratio	Speed (caps./h)	Capsule visual observation	
$\mathbf{1}$	20	0	2.8	0.9	1500	High
$\mathbf{2}$	20	0	3.4	0.7	1500	Medium
$\mathbf{3}$	20	3	3.7	0.5	2000	Low
$\mathbf{4}$	10	0	2.8	0.6	2000	Low
$\mathbf{5}$	5	0	1.9	0.8	2000	Low

$\square E D(\mathrm{mg}) \quad \square F P D(\mathrm{mg}) \quad \triangle F P F _E D(\%)$
Figure 5 - Aerodynamic performance results measured by ACI for the different fill weights.
Aerodynamic performance in accordance with visual observation of capsules.

Figure 6 - Regression coefficient plots for $\mathrm{ED}_{\mathrm{LC}}$ (\%)
Figure - Regression
and FPD ($\mu \mathrm{g} / \mathrm{capsule}$)

Conclusion

Capsule filling process of spray dried composite particles using a MG2 Flexalab machine was successfully achieved.
Low powder compaction in capsules and low rejection rates were possible to obtain by optimizing process parameters and by implementing appropriate engineering solutions
Good aerodynamic performances were obtained using a reliable and robust technology in a manufacturing environment, which is easily scaled-up

